ILC and CLIC Detector R&Ds

Hitoshi Yamamoto
Tohoku University
12-Nov-09, Muon Collider Workshop, Fermilab

(Much of the contents: from ALCPG09 and CLIC09)

ILC

ILC Features

- Well defined initial state
 - e+e- system : 4-momentum known
 - Its polarization(s) also 'known'
- Energy scan
 - e.g. $e^+e^- \rightarrow Zh, t\bar{t}$
- Relatively low noise rate (clean!)
- Small beam size, small beampipe (even with pair bkg)
 - → Hermeticity, vertex resolution
- Long inter-train gap (200ms) for readout
- Detector can/should take advantage of the above
 - → good resolutions

Higgs recoil mass resolution

■ Good momentum resolution of tracking is required (not a luxury!)

Jet(quark) reconstruction

$$e^+e^- \rightarrow \nu \overline{\nu}WW, \nu \overline{\nu}ZZ \quad W/Z \rightarrow jj$$

Current (Important mode if no Higgs is found)

Goal

$$\sigma_E/E = 0.6/\sqrt{E(\text{GeV})}$$

$$\sigma_E/E = 0.3/\sqrt{E(\text{GeV})}$$

- $\sigma_E / E = 0.3 / \sqrt{E}$ is required for Z/W \rightarrow jj to be separated (not a luxury!)
- A promising technique : PFA (particle flow algorithm)
 - Use trackers for charged energy, calorimeters for the rest
 - Remove double countings by pattern rec. (granularity!)

Event Display

T. Yoshioka

Black Blue: Neutral Hadron

T. Yoshioka

Yellow : Photon

Red Green: Charged Hadron

Black Blue: Neutral Hadron

Satellite Hits Finding

T. Yoshioka

Yellow: Photon

Red Green : Charged Hadron

Black Blue: Neutral Hadron

Remaining: Neutral Hadron

PFA Performance - state of the art -

Realistic full simulation (ILD) Achieved $\sigma_E/E=0.3/\sqrt{E}$ at Ejet up to ~100 GeV

ILC Detectors

	ILD	SiD	4th
Tracker	TPC+Si-strip	Si-strip	TPC/Si-strip/DC
Calorimeter	PFA	PFA	Compensating
В	3.5 T	5T	3.5T
ECAL Rin	1.83m	1.25m	1.5m
Rout	6.99m	6.20m	5.80m
Zout	6.62m	5.60m	6.08m

(dimensions are approximate)

3 groups submitted LOI:

http://www.linearcollider.org/cms/?pid=1000472

All: ECAL/HCAL inside solenoid
Uses pixel detectors for vertexing

IDAG Validation

- IDAG (International Detector Advisory Group)
 - Advises the research director of ILC
 - Evaluated the LOIs that are submitted March 31, 2009, and reported its recommendation to the research director
- ILCSC approved the recommendation, Aug 19, 2009.
- The validation result officially announced at ALCPG09 (Albuquerque, Sep 29. 2009)
 - ILD and SiD are 'validated' (i.e. endorsed to work toward the 2012 detailed baseline report.)
 - Dual-readout calorimetry R&Ds are encouraged to continue
 - Ref: http://www.linearcollider.org/cms/?pid=1000471

Vertex

- 6 (3 pairs) or 5 layers (no disks)
- Technology open
- Si-strip trackers
 - 2 barrel + 7 forward disks (3 of the disks are pixel)
 - Outer and end of TPC

TPC

- GEM or MicroMEGAS
- Pad (or si-pixel) readout
- ECAL
 - Si-W or Scint-strip-W
- HCAL
 - Scint-tile or Digital HCAL

SiD

- Vertex
 - 5 barrel lyrs + 4 disks
 - Technology open
- Si-strip-trackers
 - 5 barrel lyrs + 4 forward disks/ side
- EMCAL
 - Si-W 30 lyrs, pixel (4mm)²
- HCAL
 - Digital HCAL with RPC readout with (1cm)² cell
 - 40 lyrs

ILC Detector R&D Groups

Marcel Stanitzki

Driven by 'horizontal' collaborations

WWS Reviews on ILC Detector R&Ds

Goal

• Improved communications \rightarrow enhanced R&Ds

Reviewers

WWS R&D panel members, external experts, funding agency reps.
 Chair: C. Damerell

■ Had 3 reviews:

• Feb 07, Beijing: Tracking

• Jun 07 DESY : Calorimetry

• Oct 07 Fermilab : Vertexing

Reports

- http://physics.uoregon.edu/~lc/wwstudy/detrdrev.html
- Valuable information on ILC-related detector R&Ds

The WWS R&D panel is superseded by the R&D common task group chaired by M. Demarteau (under the ILC research director)

Vertexing

- If one integrates hits over 1 train for $(25 \mu m)^2$ pixel,
 - Occupancy too high (by the pair background)
 - Strategies: time slice a train (~20), small pixel, bunch id (ideal)
- Many technological options pursued:
 - Time slicing: CPCCD, ISIS, MAPS, deep N-well, CAP, DEPFET
 - Small pixel: FPCCD
 - Bunch id: Chronopixels, SOI, 3D
- Vertexing Review Report
 - 'Unable to eliminate any of them (at present)'
 - '2-4 technologies to start up, others for upgrades'
 - 'Some have applications in other fields'
- Promising technologies: vertical integration (3D, SOI)

SOI (Silicon on Insulator)

- Semi vertical integration
- Active area very close to the readout circuit (~200nm)
 - Sensor interferes with the readout circuit (e.g. back gate effect)
- Buried p-well technology:
 - Fixed the back-gate effect
 - A major advance for SOI

3D Integration

- ➤ Via and bonding technologies
 - industry-driven
- ➤ Liberation from the process constraints
- ➤ Higher integration density
- > Radiation tolerance
- ➤ Lower power consumption
- Zycube (bonding)
 Test chip designed by LBNL/KEK made by OKI
 Being tested now
- Terrazon run.FNAL-based.Broad range of MAPS and readoutElectronics, being fabricated now
- More to come

Main Tracker

■ 3 basic technologies

- Si strip (SiLC collaboration, SiD tracker)
- TPC (LC-TPC collaboration)
- CluCou (cluster-counting DC for 4th)

■ WWS review panel report

- 'Extremely impressed'
- 'Currently far from goals for all options'
- 'Forward tracking': 'achieved in practice?'
- 'A large prototype (R=1m) in B=3~5 T recommended'

Not yet: LC-TPC has tested a 'large-prototype' with r=38cm in 1T

LC-TPC collaboration

- Goal: develop ILD TPC
 - ~200 points per track
 - R = 1.8m, L=4.3m
 - MPGD
 - GFM or MicroMFGAS
 - Read out
 - $-1x5 \text{ mm}^2 \text{ pads}$
 - CMOS pixel option under R&D
- 'Large' prototype made
 - -D = 0.7m, L=0.6m
 - Beam test under 1T (DESY)
 - Both GEM and MicroMEGAS
 - So far so good. Data is being analyzed.

Prototype endplate

Beam with GEM

Pixel Readout of TPC

Use pixel sensors instead of pads Cell size : $1x5 \text{ mm}^2 \rightarrow 55x55 \text{ } \mu\text{m}^2$

Good spacial resolution Good 2-track separation (<1mm) Possibly cluster counting (dE/dx)

Calorimetry

PFA-based

- CALICE collaboration (41 groups)
 - Si-W and Scint-W ECAL, Analog and DigitalHCAL
- SiD-CAL (17 groups, some in CALICE)
 - Si-W ECAL, DHCAL, AnalogHCAL

Compensating (dual-readout)

- DREAM collaboration (8 groups)
- Fermilab group

WWS review panel report

- 'PFA and compensating both may be needed esp. in forward region'
- Compensating:
 - 'Needs more people', 'The approach could be the outright winner particularly in the ... forward region'

• PFA:

- 'Extremely promising, but simulation alone cannot be trusted.'
- 'Use a large-scale physics prototypes'
 - cal part nearly done (CALICE) (tracking not included)

CALICE Beam Tests

- Main beam tests, using π , μ , e beams:
- ***** 2006-7
 - ❖ SiW ECAL + AHCAL + TCMT @ CERN
- ***** 2007
 - ❖ Small DHCAL test @ Fermilab
- ***** 2008
 - ❖ SiW ECAL + AHCAL + TCMT @ Fermilab
- ***** 2009
 - Scint-W ECAL + AHCAL + TCMT @ Fermilab
 - Standalone RPC and Micromegas tests @ CERN
- 2010 planned
 - SiW ECAL + DHCAL + TCMT @ Fermilab

There is no perfect Hadron shower MC, but results are more or less consistent with MC.

Forward Instrumentation

ILD

FCAL collaboration

- BeamCAL
 - GaAs
 - Diamond (sCVD)
 - Sapphire
- LumiCAL
 - Short Si-strip
- Pair monitor
 - Si pixel
- Applications
 - FLASH, CMS tested

CLIC

From ILC to CLIC Detectors

■Created CLIC 3 TeV detector models using SiD and ILD geometries and software

Changes:

- 20 mrad crossing angle (instead of 14 mrad)
- Vertex Detector to ~30 mm inner radius, due to Beam-Beam Background
- Hadron Calorimeter, more dense and deeper $(7.5 \lambda_i)$ due to higher energetic Jets
- For CLIC_SiD: Moved Coil to 2.9m (CMS Like)

Pair Backgrounds

CLIC 3 TeV:

Coherent pairs (3.8×10⁸ per bunch crossing)
High energy (~ TeV) → disappear in beam pipe: ignore for now

Incoherent pairs (3.0×10⁵ per bunch crossing) Lower energy → inner vertex layers

Incoherent pairs:

ILC 0.5 TeV: n_{incoh} 0.1x10⁶ bx CLIC 3 TeV: n_{incoh} 0.3x10⁶ bx

Large energy diffrence between 0.5 TeV and 3 TeV.

Pt of pairs: x3 for CLIC 3 TeV wrt ILC

S vs T channel

S-channel

Cross section ∝ 1/S decreases with S

Particles → barrel region

e.g. e^+ W V

Cross section ∝ log S increases with S

Particles → forward region

At high energy (3 TeV), T-channel processes tend to dominate.

Lots of backgrounds in forward region - esp. $2\gamma \rightarrow \text{hadrons}$.

Time Stamping

Energy in e^+e^- event from $\gamma\gamma \rightarrow$ hadrons background Degradation of physics signal as function of background integrated in the detector (MOKKA G4 Simulation + Marlin Reconstruction)

Preliminary results of full G4+reco analyses indicate physics performance impacted for $\Delta t > 10-15$ ns

M. Battaglia

Time Stamping in Vertexing

At preset: no proven/usable technology to achieve 10ns time stamping with small enough pixel ($<25 \mu m \text{ sq.}$)

H.G. Moser: (CLIC09)

Hybrid Pixels (LHC-like): too much material, large pixels

CMOS Sensors: too slow

DEPFET: too slow (frame readout)

Advanced CMOS: very interesting. Key: PMOS & high resistivity epi

3D integration: solves many problems:
evolution/combination of hybrid pixels, MAPS or DEPFETs

⇒Most promising way to go!

Tracker: Silicon vs TPC

Silicon Tracker

Possibly good for time stamping.

Maybe also better suited for forward region Tracking. (no thick end-plate)

Can pattern recognition work in the high background environment?

TPC

50 μs full drift,

Salt-and pepper backgrounds are mostly removed by rejecting micro-curlers. No significant efficiency loss at ILC.

Can it still work at CLIC? (short bunch sp., more bkg)

Forward Tracking

Marcel Vos

Conslusion:

If the central tracking and vertexing is semewhat of a challenge (for CLIC), maintaining good performance at small polar angle is close to impossibility.

Backgrounds
Momentum resolution (B field)
Vertexing (Barrel servicing)
Pattern recognition

Clearly, needs intensive work.

Jet reconstruction - PFA (Pandra)

B = 4 T (3.5 T for ILD)

HCAL : 8 λ (6 λ for ILD)

Meets the jet energy resolution goal (3~4%) up to 500 GeV jet.

SiD PFA and Compensating Calorimetry give similar jet resolution

M. Thomson

E _{JET}	$\sigma_{\rm E}/{\rm E} = \alpha/\sqrt{\rm E_{jj}} $ $\cos\theta <0.7$	σ _E /E _j
45 GeV	25.2 %	3.7 %
100 GeV	28.7 %	2.9 %
180 GeV	37.5 %	2.8 %
250 GeV	44.7 %	2.8 %
375 GeV	71.7 %	3.2 %
500 GeV	78.0 %	3.5 %

W-HCAL

Simulation: (P. Speckmayer)

PFA resolution is comparable to Fe - No tuning done for W

Prototype idea: (W. Klempt)

Start 2010 with a "small" prototype:

- *Start with ~20 W plates size 80x80 cm², 1 cm thick
- *Use as much as possible existing equipment from CALICE (detector planes, readout electronics, DAQ, mechanical infrastructure.....)
- *First test beam at PS/SPS in autumn 2010
- *Later increase depth to 40 or more layers

Summary

- Much of the HEP detector R&Ds have been driven by ILC
 - Horizontal detector R&D collborations have been effective in carrying out the efforts. (CALICE, LC-TPC, SiLC, FCAL, etc...)
- The large amount of works done for ILC detectors are concisely summarized in the 3 LOIs:
 - http://www.linearcollider.org/cms/?pid=1000472
- Critical assessments of the ILC detector R&Ds are reported in the WWS detector R&D reviews:
 - http://physics.uoregon.edu/~lc/wwstudy/detrdrev.html
- CLIC detector R&Ds have greatly benefitted from the ILC detector studies.
- There are important 'CLIC-specific' issues, but solutions to them will benefit ILC.
 - Time stamping, forward region, etc.

MATRIX

Revolutions

